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The background field method is a useful scheme for calculation of the effective 
action in conventional quantum field theory. In stochastic quantization this 
approach is introduced by using auxiliary fields, as suggested by Okano. In this 
work, we implement the background field method, using the normal coordinate 
expansion, for the nonlinear sigma model on a general Riemannian manifold in 
the context of stochastic quantization. We also calculate, making use of this 
novel formulation, the action necessary for investigation of the divergences, at 
least at the one-loop level. 

1. I N T R O D U C T I O N  

The stochastic quantization method (Parisi and Wu, 1981) provides us 
with many applications in scalar, gauge, tensor, and string field theories 
(Damgaard and Hiiffel, 1987). The central point of the idea employed in 
this method was to introduce a fifth (or fictitious) time ~ and postulate a 
stochastic Langevin dynamics for the system by means of a noisy field 
~(x, z) with Gaussian correlations. In the equilibrium limit (~ ~oo),  
stochastic correlation functions become the N-point Euclidean Green func- 
tions. Solving the Langevin equations by an iterative procedure, it is 
possible to develop perturbation theory for finite z. One of the advantages 
of this approach is a prescription for regularization of divergent amplitudes 
in stochastic diagrams, which is realized by considering a non-Markovian 
stochastic process (Abdalla and Viana, 1989). A formulation based in the 
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path integral representation of the generating functional of the stochastic 
correlation function has been developed in order to discuss several aspects 
related to perturbative calculations (Chaturvedi et al., 1986), and is conve- 
nient for discussion of renormalization. Recently the background field 
method was introduced in the stochastic quantization scheme (Okano, 
1987). 

The background field method (Abbott, 1981) has been a useful 
technique to investigate divergences of the nonlinear a-model on a general 
Riemannian manifold (Alvarez-Gaum6 et al., 1981) in order to study 
possible connections with strings. In this work we implement the back- 
ground field method for this model (defned on a Riemannian manifold) in 
the context of stochastic quantization method. 

This paper is organized as follows: in Section 2 we briefly review the 
functional-integral approach and the extended stochastic correlation func- 
tions for scalar fields. In Section 3 we display the background field 
generating functional. In Section 4 we make contact with the formalism of 
the stochastic quantization of the nonlinear a-model. In Section 5 we 
develop the background field method for the nonlinear a-model on a 
general Riemannian manifold. We obtain an effective action for further 
one-loop calculations. Finally, a summary and conclusions are given in 
Section 6. 

2. EXTENDED STOCHASTIC CORRELATION FUNCTIONS 

In the essence of the background field method lies the calculation of 
the effective action, and is necessary to compute trees of proper (1PI) 
diagrams. However, in its original sense, stochastic quantization does not 
allow the concept of a proper diagram (Damgaard and Hfiffel, 1987). We 
can circumvent this problem, introducing auxiliary 7~-fields at the external 
legs of usual diagrams (Namiki and Yamanaka, 1986). 

The main object to be studied here is the extended stochastic correla- 
tion function, which includes (for scalar theories) both ~b and ~-fields: 

(~b(Xl, TI) " " " ~(XN, TU)~(yl, V'1) " " " ~z(yN, ~V)) (1) 

We can get these N-point correlation functions by using a suitable defined 
generating functional Z[J] by functional differentiation: 

<q~(x,, ~ )  . . .  re(y,,  ~ )  . . . >  = - z[&] (2) 
J~ = 0 

where we have assigned two external sources to q~ and u-fields, Jo) and J(2), 
respectively, such that J= = (JmJ(2)). 
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The calculation of this generating functional can be done from the 
operator point of  view (Chaturvedi et aL, 1986). The stochastic scalar field 
~b is considered as a Heisenberg operator: ~b(x, ~) -* 6(x, ~), and there is a 
canonically conjugated momentum ~(y, z), obeying equal-fictitious time 
commutation rules: 

[6(x, z), r2(y, z')]~ = ~,= 6(x - y )  (3) 

[6, 6] = [~, ~1 = o (4) 

The stochastic field satisfies a Heisenberg-type equation 

~(X,  T) -- [o@Fp, 6] (5) 
& 

where J(?w, is the Fokker-Planck Hamiltonian. Recall that the Fokker -  
Planck equation (which is equivalent to the usual Langevin equation of the 
stochastic quantization method) is written as (we omit the carets for ease 
of notation) 

OP 
~3~- (4, z) = YgvpP(~b, z) (6) 

where P(~b, r) is the probability distribution describing the stochastic 
process, and Yt~ is an operator given by 

In the operator approach we assign functional derivatives to canonical 
momenta, as 

6 
-~(x,  ~) (8) 

a4~(x, T) 

and get 

YgFP = dx --~(x, ~) - ~  + ~2(x, z) (9) 

Performing a Legendre transformation, we readily obtain the Lagran- 
gian density as 

~r ~q~ _ ~2 + ~K[~] (10) = r~ -~- - afVp = ~ -  

where K[q~] is a Langevin kernel, whose simpler expression (for a bosonic 
or gauge field) is (OS/O(~)[4)]. Notice that in fermionic theories other kernels 
are necessary. Integrating over the ~b and n-fields, in the Euclidean D- 
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dimensional space, we write the path-integral representation of the stochas- 
tic generating functional: 

where �9 is the two-component vector (~). 

-t- J~,~)l (11) 

3. THE BACKGROUND FIELD GENERATING FUNCTIONAL 

In ordinary quantum field theories, the background field method 
is a scheme for calculation of the effective action (DeWitt, 1967; 
Honerkamp, 1972; Abbott, 1981). Starting from this object, we construct 
the S-matrix stringing trees of 1PI diagrams to generate connected Green 
functions, cutting external legs and putting all momenta on-shell. This 
method was extended to stochastic quantization by Okano (1987). We will 
restrict our discussion to scalar theories, using as an example a nonmassive 
24, 4 theory. 

When defined in Ricci-flat (Euclidean) manifolds, scalar theories allow 
the simple field splitting 

4, --, q,c, + ~ (12) 

where ~Pct is the background part and ~b is the quantum part. As stressed by 
Okano, it is not necessary to split 1r-fields. The background stochastic 
generating functional 2~[J,, q~] is obtained by noting that (i) the integration 
is performed only over the quantum parts, (ii) we do not couple the 
external source to the background field. Hence 

where 

We write 
transform: 

where 

.L~'[q9 + ~b] = rc(8~q9 + d~O) - Ir 2 + rcK[cp + r~] (14) 

the stochastic effective action by means of a Legendre 

(15) 

I,~[J~, ~o] = - In 2[J,,  ~o] (16) 
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generates connected extended stochastic correlation functions, and the 
"classical" fields ff and ~ are given by 

O l~[J~, ~o] (17) 

~r ~o] 
- (18) 

M ( 2 )  

As in ordinary field theories, r"[0, if, ~] is the sum of 1PI extended 
stochastic diagrams. They have two types of composite lines, namely (a) 
external rc - q~ and cp - q~ legs, and (b) internal ~ - ~ and ~ - ~ legs. The 
propagators are obtained from the free part of  the stochastic generating 
functional by double functional differentiation [see equation (2)] at zero 
external sources and taking the inverse of the kinetic terms. Vertices are 
obtained, as usual, from the interaction part. 

We can consider, as an example, a quartic self-interactive nonmassive 
bosonic model defined by the Euclidean action 

S[~)]:fdD'x[~(~tt~l~O#~-q-~l.~)4 ] (19) 

so that 

2 q~3 (20) K[4, ]  = - [ ]  ~ + ~. 

Performing the splitting prescribed in (3.1), we have, using (3.2), 

"~-/'C --[]((~ '-~/)-~-~(~0Af'~/)  3 .-~J(l)~/.-]-J(2)~ (21) 

The diagrammatic rules for this model are depicted in Table I, in momen- 
tum space. It is worthwhile to note that we also Fourier transform over the 
fictitious time, so that v ~ co and z ' ~  z in momentum-space propagators. 

4. STOCHASTIC QUANTIZATION OF THE NONLINEAR SIGMA 
M O D E L  

Constrained systems, when stochastically quantized, have nontrivial 
features. A formal procedure to handle this situation is to consider the 
holonomic constraint on the hypersurface: 

M: F[~b] = 0 (22) 
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Table I. 

Abdaila et aL 

Diagrammatic Rules for ~,~4 Model Through Stochastic 
Generating Functional Approach 

Propagators 
k 1 

(~rc)  = k 2 + io9 

k 1 
(~oq~) (k2) + co ~ 

k (TZ~Z) = ~ (k 2 - i~)2 

1 
P ((pgO) (p2)2 .+. 22 

Vertices 

32 

32 

This constraint can be imposed directly on the Langevin equation by means 
of  Lagrange multipliers (Namiki and Yamanaka, 1986): 

aq~;(x,z) _(K[~pi] + OF ) Oz = 2 ~ [q~] + r/;(x, z)  (23)  

where r/i(x, ~) is the white-noise field, with Gaussian correlations: 

( ? ] )  = 0, (/~i (X, T)~]j (X ' ,  ~/)  ) = 26 i j~  4(X - -  X t)~(,~ - -  T ' )  
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Notice that in O(N) a-models the constraint condition 

s N 
M: ~ ~b~ = - -  (24) 

l 2 f  

ensures that ~b-fields lie on a N-sphere. It is possible to use this approach 
so as to study the 1/N expansion of the model (Brunelli and Gomes, 1992). 

A different pathway is to put the constraint into the metric of  the 
differentiable manifold defined by ~b-fields. For a-models the following 
classical action has been proposed: 

S[~b] = 2-~ d2x g~j[~b]/~/,t(~ i O/~D j (25) 

where i, j = 1 . . . . .  N and # = 0, 1. Without loss of  generality we omit the 
coupling constant. 

The kernel is given by 

K, [~b] = -g~j[~b][ [] ~b s + r~l 8,(0 k 8,~b t] (26) 

(F~t is the Christoffel symbol), and the generating functional is obtained 
from our preceding discussion, including also the n-fields: 

~ + r~i~ ~ 

+~zig0.[~]([] q~J- FJk, d~,dpkd~,~t)l+ J~O} (27) 

This equation will be the starting point of  the forthcoming analysis of the 
background field method. 

5. BACKGROUND FIELD SPLITTING FOR NONLINEAR SIGMA 
M O D E L  

When defined in non-Ricci fiat manifolds, scalar models do not allow 
the simple field splitting (12), because the ~k/-field will not be transformed 
as a covariant vector. A common method for dealing with these difficulties 
is to expand the quantum part ~" in powers of  the so-called Riemannian 
(or normal) coordinates ~i (Alvarez-Gaum6 et al., 1981). One attaches 
tangent vectors to the curved manifold M such that a geodesic is given by 

s 2 = g , j ~ , ~ s  (28) 

If we define a variable 2"(t) as a geodetic parametrization (t is 
proportional to arc length), satisfying 

,~" + U~,~J,~ k = 0 (29) 
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in which dots indicate differentiation with respect to t, one gets, for t = 0, 

,~(0) = qV, ,~(0) = r (30) 

and for an arbitrary value of t, the expansion 

1 1 i ~j,r 2(t) = dpi + ~it - -2  F}l,jz CSlr Fjl,hj3 . . . .  (31) 

where F}I,j2...jN is the Christoffel connection. 
Choosing t = 1, we can write, for the quantum part of the splitting, 

0' = r  ~ r~,kfi~'r  k~ 1 r,  ~k ,~*~3 . . . .  (32) 
- -  3 !  Z k l k 2 k 3 %  ~ 

In one-loop calculations, it is sufficient to retain terms up to r in all 
expansions. For later use, we give some properties: 

(i) D.r  0 . ~ +  Fijk~i~u(,O k (33) 

(ii) 0(j~0j2 �9 �9 �9 Oj._2Fj. _ ~j.) = 0 (34) 

A covariant tensor field has the Taylor-like expansion within this 
procedure: 

1 / ~ _0 ~r~, ~~162 r (35) 
Tklk2""~"(~0 + 0) = ~ =~0 hi" ~0r Or ' 

in which we often use Riemann tensors, in order to take the coefficients 
covariant. It is often necessary to deal with quadratic terms like D.r162 ". 
In this case, we proceed as follows: using a n-bein, one rewrites normal 
coordinates in the tangent system: 

Ca(x) = ef  r (36) 

such that the covariant derivatives turn out to be given by 

Due ~ = ~ur ~ + coab~u~o; (37) 

where ~o~ b is the spin connection. It follows that co~'bO,~o ~ stands for an 
SO(N)-gauge potential for q~-fields. 

Our task is to find an expression for the generating functional, so that 
we outline some useful expansions (the fictitious time is artificially treated 
as an additional space-time coordinate): 

1 
~,(~0; + 09  = a,,r  + D,r + 5 Ri,,~jr162 (38) 

E3(q~J + O j) = [BOJ + ~-lCJ + ~u(F~,~r t) (39) 

1 
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O.c(q) i_jU ~]i) = O.cq~i jf_ ~ i  __ ~ Oj(F~lk2 ~kl~k2)~q~j (40) 

1 
gU(~O k "t- ~1 k) =-" gij(q) k) -~ -~ Rik lkzl(~ok)~kIr k2 (41) 

F{l((p -t- ~/) ----- 17'~l(r --]- ~ [gjm(OkRmm ,raft "q- ~lRkm ,m2m 

(42) 
- a mRk m,m=, . )  + ~ . ~ , . W . ( a ~ g . ~ ,  + a,g~m --  amgk,)]~'~'r  m= 

Applying these expressions to (26) and taking in account equation 
(13), we obtain, after some algebra, the generating functional: 

~[J~, q}] = N~b ~rc exp - dZx dz [~qa({o t-  I//) -I- Jo)O + J(2) g ] 

where 

(43) 

[ ' 1 
- rd{gq [] q)J + gq [] r + gqO.(F~r ~ ) 

4- ~ gijdm(RJk,,2,r 'r 2)Ouq9 --k-~ Rik ,k2jCk'r j 

( + g,f{, ~,&~,,~o'+ O,,q, kD,d " + 5 ~q'kR'*'<"U'r 

, ) + Dt,~kD~,q~ t + D~,~gD.~ 1 + ~ R~ lk2mCkl~k2oi.t~omOttq) l 

-'t-gij ~ [gjm(OkR,,,k~k2l + OIRkk,k2m -- c?mRkklk2t) + Rik,k2,,, 

X (Okgml "q- Olgkm -- O,,,g.l)]~*~k2}O.q~kO~,~O l 

1 k I, �9 I, t ~ 4-~Rik,t~2j~ ~ 2F~,t0~q~ 0uq~ ~ (44) 

This result then can be used to investigate the divergences of the model 
and discuss its renormalization, too, at least in the one-loop approxima- 
tion. 
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6. CONCLUSIONS 

In a recent paper, Okano presented a formulation of the background 
field method in stochastic quantization which performs the calculations 
starting from the path-integral representation of  the stochastic generating 
functional, and showed the usefulness of this technique in the computation 
of stochastic effective action. We have outlined the basics of his method 
and considered as an example a nonmassive 2~b 4 theory. Within this 
framework we showed the corresponding diagrammatic rules. 

We were able to implement the background field method for the 
nonlinear sigma model on a general Riemannian manifold in the context of 
stochastic quantization. We first introduce the constraint into the manifold 
metric, and write the generating functional including the auxiliary ~-fields 
and quantum fluctuations ~ around the classical solutions r The prescrip- 
tion used here is the introduction of  the covariant vector field ~ t(x, t) at the 
point r t) for the quantum field ~i(x,  t). In this case, we take a 
Riemannian, or normal coordinate expansion. 

We have obtained the generating functional for the nonlinear sigma 
model in stochastic quantization. The result allows us to discuss, at least at 
the one-loop level, the renormalization of  this model in stochastic quantiza- 
tion. This will be the subject of a forthcoming paper. 
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